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Preface

Reading and Seeing
The central message of chemistry is that the properties of a substance come from its struc-
ture. What is less obvious, but very powerful, is that someone with training in chemistry 
can look at the structure of a substance and tell you a lot about its properties. Organic 
chemistry has always been, and continues to be, the branch of chemistry that best connects 
structure with properties. 
 The goal of this text, as it has been through eight previous editions, is to provide 
students with the conceptual tools to understand and apply the relationship between the 
structures of organic compounds and their properties. Both the organization of the text and 
the presentation of individual topics were designed with this objective in mind. 
 In planning this edition, we committed ourselves to emphasizing line formulas as the 
primary tool for communicating structural information. Among other features, they replace 
the act of reading and interpreting strings of letters with seeing structural relationships 
between molecules. In order to provide a smooth transition for students as they progress 
from the textual representations they’ve used in introductory chemistry, we gradually 
increase the proportion of bond-line formulas chapter by chapter until they eventually 
become the major mode of structural representation. Thus, we illustrate SN1 stereochem-
istry in Chapter 8 by the equation:

Cl OCH3CH3OH +
CH3O

(R)-3-Chloro-3,7-
dimethyloctane

(S)-3,7-Dimethyl-3-
methoxyoctane (89%)

(R)-3,7-Dimethyl-3-
methoxyoctane (11%)

 The conversion from reading to seeing is also evident in data recast from a tabular to 
a graphical format. One example compares SN2 reaction rates: 

Increasing relative reactivity toward SN2 substitution
(RBr + LiI in acetone, 25°C)

Br Br
Br

CH3Br

very slow 1 1,350 221,000

The pace of technological improvements in nuclear magnetic resonance spectroscopy 
requires regular updating of this core topic, and almost all of the proton spectra in this 

It’s diferent now.

What’s diferent?

How we read, share information, and learn. That’s what’s diferent.  

All of these things are more visual, more graphical than before.

And so is this book. 

xx
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edition were obtained at 300 MHz. The spectra themselves were provided courtesy of 
Sigma-Aldrich, then graphically enhanced to maximize their usefulness as a teaching tool. 

δ

The teaching of organic chemistry has especially benefted as powerful mod-
eling and graphics software have become routinely available. Computer-gen-
erated molecular models and electrostatic potential maps were integrated into 
the third edition of this text and their number has increased in each succeeding 
edition. Also seeing increasing use are molecular orbital theory and the role 
of orbital interactions in chemical reactivity. These, too, have been adapted to 
enhance their value as teaching tools as illustrated in Figure 10.2 showing the 
π-molecular orbitals of allylic carbocations, radicals, and anions.

Audience 
Organic Chemistry is designed to meet the needs of the “mainstream,” two-semester 
undergraduate organic chemistry course. From the beginning and with each new edition, 
we have remained grounded in some fundamental notions. These include important issues 
concerning the intended audience. Is the topic appropriate for them with respect to their 
interests, aspirations, and experience? Just as important is the need to present an accurate 
picture of the present state of organic chemistry. How do we know what we know? What 
makes organic chemistry worth knowing? Where are we now? Where are we headed?

A Functional Group Organization  
With a Mechanistic Emphasis 

The text is organized according to functional groups—the structural units most closely 
identifed with a molecule’s characteristic properties. This time-tested organization offers 
two major advantages over alternatives organized according to mecha-
nisms or reaction types.

 1. The information content of individual chapters is more 
manageable in the functional–group approach. A text organized 
around functional groups typically has more and shorter chapters 
than one organized according to mechanism. 

 2. Patterns of reactivity are reinforced when a reaction used to 
prepare a particular functional–group family reappears as a 
characteristic reaction of another.

Understanding organic chemistry, however, is impossible without a 
solid grasp of mechanisms. Our approach is to build this understand-
ing from the ground up beginning in Section 1.12 “Curved Arrows 
and Chemical Reactions” and continuing through Section 1.16 with 
applications to Brønsted and Lewis acid-base chemistry. The text 
contains more than 60 mechanisms that are featured as stand-alone 
items presented as a series of elementary steps. Numerous other 
mechanisms— many of them accompanied by potential energy 
diagrams— are incorporated into the narrative fow.
 Numerous other mechanisms—many of them accompanied by 
potential energy diagrams—are incorporated into the narrative fow.

π3

π2

π1

Cation

H

H

H

H

H

π3

π1

π2

π3

π2

π1

Radical

H

H H

H

H

Anion

H

H

H

H

H

Mechanism 5.1

The E1 Mechanism for Acid-Catalyzed Dehydration of tert-Butyl Alcohol

THE OVERALL REACTION:

 

H2SO4

heat
(CH3)3COH

tert-Butyl alcohol

(CH3)2C CH2

2-Methylpropene

+ H2O

Water

THE MECHANISM:

Step 1: Protonation of tert-butyl alcohol:

 

H

O

tert-Butyl alcohol

+ H

H

O

H
fast

Hydronium ion

H

O +

H

O

HH

Watertert-Butyloxonium ion

Step 2: Dissociation of tert-butyloxonium ion to a carbocation and water: 

 

slow

H

O

H

tert-Butyloxonium ion

+

H

O

H

Watertert-Butyl cation

Step 3: Deprotonation of tert-butyl cation:

fast

H

O

H

Water

H

tert-Butyl cation

+

2-Methylpropene

H

H

O

H

Hydronium ion

+
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Problems 

Problem-solving strategies and skills are 
emphasized throughout. Understanding 
is progressively reinforced by problems 
that appear within topic sections. For 
many problems, sample solutions are 
given, including examples of handwrit-
ten solutions from the author.

Generous and Effective Use of Tables 

Annotated summary tables that incorporate commentary have 
been a staple of Organic Chemistry since the frst edition. 
Some review reactions from earlier chapters, others the reac-
tions or concepts of a current chapter. Still others walk the 
reader step-by-step through skill builders and concepts unique 
to organic chemistry. Well received by students and faculty 
alike, these summary tables remain one of the text’s strengths.

Chapter Openers

Each chapter begins with an opener meant to capture the reader’s 
attention. Chemistry that is highlighted in the opener is relevant 
to chemistry that is included in the chapter. 

Descriptive Passages and Interpretive Problems 

Many organic chemistry students later take standardized pre-
professional examinations composed of problems derived from a 
descriptive passage; this text includes comparable passages and 
problems to familiarize students with this testing style. 
 Thus, every chapter concludes with a self-contained Descrip-
tive Passage and Interpretive Problems unit that complements the 
chapter’s content while emulating the “MCAT style.” These 27 
passages—listed on page xix—are accompanied by more than 100 
total multiple-choice problems. Two of these: More on Spin-Spin 
Splitting and Coupling Constants in Chapter 13 and Cyclobutadi-
ene and (Cyclobutadiene)tricarbonyliron in Chapter 14 are new to 
this edition.
 The passages focus on a wide range of topics—from structure, 
synthesis, mechanism, and natural products. They provide instruc-

TABLE 23.2 Familiar Reaction Types of Carbohydrates

Reaction and comments Example

1.  Reduction: Carbonyl 
groups in carbohydrates 
are reduced by the 
same methods used for 
aldehydes and ketones: 
reduction with sodium 
borohydride or lithium 
aluminum hydride or by 
catalytic hydrogenation. 

HO
O

OH

OH

OH

OH

HO
OH

OH

OH

OH

OH

D-Galactose D-Galactitol (90%)

NaBH4

H2O

2.  Cyanohydrin formation:  
Reaction of an aldose 
with HCN gives a mixture 
of two diastereomeric 
cyanohydrins.

HO O

OH

OH

OH

HCN
HO CN

OH

OH

OH

HO CN

OH

OH

OH

OH OH

L-Arabinose L-Mannonitrile L-Glucononitrile

3.  Acylation: All available 
hydroxyl groups of 
carbohydrates are capable 
of undergoing acylation to 
form esters.

AcOHO

CH3C
OHO

HO
HOOH

 5Ac2O
OAcO

AcO
AcO OAc

pyridine

α-D-Glucopyranose   Acetic 
anhydride

1,2,3,4,6-Penta-O-acetyl-
D-glucopyranose (88%)

O

Ac =+

4.  Alkylation: Carbohydrate 
hydroxyl groups react with 
alkyl halides, especially 
methyl and benzyl halides, 
to give ethers.

C6H5CH2OHO
OHO

HO
HO OCH3

4C6H5CH2Cl
OC6H5CH2O

C6H5CH2O
C6H5CH2OOCH3

Methyl 
α-D-glucopyranoside

Benzyl
chloride

Methyl 2,3,4,6-tetra-O-benzyl-
α-D-glucopyranoside (95%)

+ KOH

dioxane

5.  Acetal formation:  
Carbohydrates can serve 
as the diol component 
in the formation of cyclic 
acetals on reaction with 
aldehydes and ketones in 
the presence of an acid 
catalyst. In the example 
shown, the catalyst is a 
Lewis acid.

HO
OHO

HO
HO

OCH3

OO
O

HO
HO

OCH3

ZnCl2
C6H5

Methyl α-D-
glucopyranoside

Methyl 4,6-O-benzylidene-
α-D-glucopyranoside (63%)

Benzaldehyde

C6H5CH O+

6.  Pyranose-furanose 
isomerization: The 
furanose and pyranose 
forms of a carbohydrate 
are cyclic hemiacetals and 
equilibrate by way of their 
open-chain isomer.

O

HO
HO OH

HO OH

HO
HO

O
HO O

OHHO

OH

HO

D-Ribofuranose 
(α and/or β)

H

D-Ribopyranose 
(α and/or β)

D-Ribose

7.  Enolization: Enolization 
of the open-chain form of 
a carbohydrate gives an 
enediol. Carbohydrates that 
are epimeric at C-2 give the 
same enediol.

D-Glucose or 
D-mannose

D-Gluco- or 
D-mannopyranose 

(α and/or β)

OH
HO

HO
OH

H
Enediol

HO

HO

O
HO

HO
HO

OH OH

OH
HO

HO

HO

O

H

HO

y y
hydroxyl groups react with HO

H5CH

Benzy
hloride

zalde

H5CH

HO

HO
HO

H

hydroxyl groups react with HO

H

B
h

z

H

Problem 14.4

Write the structure of the organic product of each of the following reactions.

 (a)  

O

H

+ Li
1. diethyl ether

2.  H3O+

 (b)  
O

+ MgBr
1. diethyl ether

2.  H3O+
 

 (c)  +
1. diethyl ether

2.  H3O+H2C O ClMg

OCH3

Sample Solution

 

NH3

O

O

+

HO

HO

-

Organometallic Compounds

Organometallic compounds are compounds that have a 
carbon– metal bond; they occupy the place where organic 

and inorganic chemistry meet. You are already familiar with at 
least one organometallic compound, sodium acetylide 
(NaC CH), which has an ionic bond between carbon and 
sodium. But just because a compound contains both a metal and 
carbon isn’t enough to classify it as organometallic. Like sodium 
acetylide, sodium methoxide (NaOCH3) is an ionic compound. 
Unlike sodium acetylide, however, the negative charge in sodium 
methoxide resides on oxygen, not carbon.

Sodium acetylide
(has a carbon-to-metal bond)

Naϩ CPCH
Ϫ

Sodium methoxide
(does not have a carbon-to-metal bond)

Naϩ OCH3
Ϫ

 The properties of organometallic compounds are much 
different from those of the other classes we have studied so 
far and differ among themselves according to the metal, its 
oxidation state, and the groups attached to the metal. Many 
organometallic compounds are sources of nucleophilic carbon, 
a quality that makes them especially valuable to the synthetic 
organic chemist who needs to make carbon–carbon bonds. For 
example, the preparation of alkynes by the reaction of sodium 
acetylide with alkyl halides (Section 9.6) depends on the pres-
ence of a negatively charged, nucleophilic carbon in acetylide 
ion. Conversely, certain other organometallic compounds 
behave as electrophiles.

578

Parkinsonism results from a dopamine deficit in the brain that affects the “firing” 

of neurons. It responds to treatment with a chiral drug (L-dopa), one commercial 

synthesis of which involves the enantioselective organorhodium-catalyzed 

hydrogenation described in Section 14.12.

14
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tors with numerous opportunities to customize their own organic chemistry course while 
giving students practice in combining new information with what they have already learned. 

What’s New
We have already described a number of graphical features designed to foster learning:

▶ an emphasis on bond–line structural drawings 

▶ adoption of 300 MHz as the standard for nuclear magnetic resonance spectra and 
enhancing them graphically to allow easier interpretation 

▶ greater integration of molecular orbital diagrams

There have also been signifcant changes in content.

▶ Chapter 14 (Organometallic Compounds) has been a prominent part of our 
text since the frst edition and, owing to Nobel-worthy advances based on organic 
compounds of transition metals, has steadily increased in importance. The chemistry 
of these transition–metal organic compounds has been expanded in 9e to where it 
now comprises approximately one-half of the chapter.

▶ Chapter 20 (Enols and Enolates) has been extensively revised and is much shorter. 
The new, more conceptual organization allows many synthetic reactions formerly 
treated independently according to purpose to be grouped effciently according to 
mechanism. 

▶ Retrosynthetic analysis is introduced earlier (Section 6.15), elaborated with 
dedicated sections in subsequent chapters (8.12, 10.13, 11.16, 12.16, 14.7), and used 
regularly thereafter. 

▶ Boxed essays– Fullerenes, Nanotubes, and Graphene updates the ever-expanding 
role of elemental carbon in its many forms in Chapter 11. Sustainability and Organic 
Chemistry is a new boxed essay in Chapter 15 that uses real-world examples to 
illustrate principles of “green” chemistry. 

McGraw-Hill Higher Education  
and Blackboard Have Teamed Up

Blackboard®, the Web-based course management system, 
has partnered with McGraw-Hill to better allow students 
and faculty to use online materials and activities to com-
plement face-to-face teaching. Blackboard features excit-
ing social learning and teaching tools that foster more 
logical, visually impactful, and active learning opportuni-
ties for students. You’ll transform your closed-door class-
rooms into communities where students remain connected to their educational experience 
24 hours a day. This partnership allows you and your students access to McGraw-Hill’s 
Connect® and McGraw-Hill Create™ right from within your Blackboard course—all with 
one single sign-on. Not only do you get single sign-on with Connect and Create, you also 
get deep integration of McGraw-Hill content and content engines right in Blackboard. 
Whether you’re choosing a book for your course or building Connect assignments, all the 
tools you need are right where you want them—inside of Blackboard. Gradebooks are now 
seamless. When a student completes an integrated Connect assignment, the grade for that 
assignment automatically (and instantly) feeds your Blackboard grade center. McGraw-
Hill and Blackboard can now offer you easy access to industry leading technology and 
content, whether your campus hosts it or we do. Be sure to ask your local McGraw-Hill 
representative for details.

McGraw-Hill LearnSmart™

McGraw-Hill LearnSmart is available as an integrated fea-
ture of McGraw-Hill Connect® Chemistry It is an adaptive learning system designed to help 
students learn faster, study more effciently, and retain more knowledge for greater success. 
LearnSmart assesses a student’s knowledge of course content through a series of adaptive 
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questions. It pinpoints concepts the student does not understand and maps out a personalized 
study plan for success. This innovative study tool also has features that allow instructors to 
see exactly what students have accomplished and a built-in assessment tool for graded assign-
ments. Visit the following site for a demonstration. www.mhlearnsmart.com

McGraw-Hill Connect® Chemistry

 McGraw-Hill Connect Chemistry provides online presen-
tation, assignment, and assessment solutions. It connects 
your students with the tools and resources they’ll need to 

achieve success. With Connect Chemistry, you can deliver assign-
ments, quizzes, and tests online. A robust set of questions and 
activities are presented and aligned with the textbook’s learning 
outcomes. As an instructor, you can edit existing questions and 
author entirely new problems. Track individual student perform-
ance—by question, assignment, or in relation to the class overall—
with detailed grade reports. Integrate grade reports easily with 
Learning Management Systems (LMS), such as WebCT and Black-
board—and much more. ConnectPlus Chemistry provides stu-
dents with all the advantages of Connect Chemistry, plus 24/7 
online access to an eBook. This media-rich version of the book is 
available through the McGraw-Hill Connect platform and allows 
seamless integration of text, media, and assessments. To learn more, 
visit www.mcgrawhillconnect.com

McGraw-Hill Create™

 With McGraw-Hill Create, you can easily rearrange chapters, 
combine material from other content sources, and quickly upload 

content you have written, like your course syllabus or teaching notes. Find the content you 
need in Create by searching through thousands of leading McGraw-Hill textbooks. Arrange 
your book to ft your teaching style. Create even allows you to personalize your book’s 
appearance by selecting the cover and adding your name, school, and course information. 
Order a Create book and you’ll receive a complimentary print review copy in 3–5 business 
days or a complimentary electronic review copy (eComp) via e-mail in minutes. Go to 
www.mcgrawhillcreate.com today and register to experience how McGraw-Hill Create 
empowers you to teach your students your way. www.mcgrawhillcreate.com

chemistry
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My Lectures—Tegrity®

 McGraw-Hill Tegrity® records and distributes your class lecture with 
just a click of a button. Students can view anytime/anywhere via com-

puter, iPod, or mobile device. It indexes as it records your PowerPoint® presentations and 
anything shown on your computer so students can use keywords to fnd exactly what they 
want to study. Tegrity is available as an integrated feature of McGraw-Hill Connect Biology 
and as a standalone.

Instructor Resources 
Presentation Center 

Accessed from the Connect website, Presentation Center is an online digital library 
containing photos, artwork, animations, and other media types that can be used to create 
customized lectures, visually enhanced tests and quizzes, compelling course websites, or 
attractive printed support materials. All assets are copyrighted by McGraw-Hill Higher 
Education, but can be used by instructors for classroom purposes. The visual resources in 
this collection include:

 ◾ Art Full-color digital fles of all illustrations in the book can be readily incorporated 
into lecture presentations, exams, or custom-made classroom materials. In addition, 
all fles are pre-inserted into PowerPoint slides for ease of lecture preparation.

 ◾ Photos The photo collection contains digital fles of photographs from the text, 
which can be reproduced for multiple classroom uses.

Also accessed through your textbook’s Connect website are:

 ◾ PowerPoint® Lecture Outlines Ready-made presentations that combine art and 
lecture notes are provided for each chapter of the text.

 ◾ Classroom Response Systems bring interactivity into the classroom or lecture hall. 
These wireless response systems, which are essentially remote that are easy to use 
and engage students, give the instructor and students immediate feedback from the 
entire class. Wireless response systems allow instructors to motivate student prepara-
tion, interactivity, and active learning. Nearly 600 questions covering the content of 
the Organic Chemistry text are available on the Organic Chemistry site for use with 
any classroom response system.

 ◾ Test Bank An updated test bank with over 1300 questions is available with the 
9th edition. The Test Bank is available as both word fles and in a computerized test 
bank program, which utilizes testing software to quickly create customized exams. 
This user-friendly program allows instructors to sort questions by format; edit exist-
ing questions or add new ones; and scramble questions for multiple versions of the 
same test.

 ◾ Solutions Manual This manual provides complete solutions to all end-of-chapter 
problems in the text. The Solutions Manual includes step-by-step solutions to each 
problem in the text as well as self-tests to assess student understanding.

Student Resources 
Solutions Manual 

The Solutions Manual provides step-by-step solutions guiding the student through the rea-
soning behind each problem in the text. There is also a self-test section at the end of each 
chapter that is designed to assess the student’s mastery of the material.

Schaum’s Outline of Organic Chemistry

This helpful study aid provides students with hundreds of solved and supplementary prob-
lems for the organic chemistry course.
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Although function dictates form in the things we build, structure determines 

properties in molecules. Dragsters are designed to accelerate to high speeds 

in a short distance from a standing start. Most are powered by nitromethane 

(CH3NO2), which, because of its structure, makes it more suitable for this 

purpose than gasoline.

1

Structure Determines 

Properties

Structure* is the key to everything in chemistry. The properties
of a substance depend on the atoms it contains and the way 

these atoms are connected. What is less obvious, but very power-
ful, is the idea that someone who is trained in chemistry can look 
at the structural formula of a substance and tell you a lot about its 
properties. This chapter begins your training toward understand-
ing the relationship between structure and properties in organic 
compounds. It reviews some fundamental principles of the Lewis 
approach to molecular structure and bonding. By applying these 
principles, you will learn to recognize structural patterns that are 
more stable than others and develop skills in communicating 
structural information that will be used throughout your study of 
organic chemistry. A key relationship between structure and 
properties will be introduced by examining the fundamentals of 
acid–base chemistry from a structural perspective.

1.1 Atoms, Electrons, and Orbitals

Before discussing structure and bonding in molecules, let’s frst
review some fundamentals of atomic structure. Each element is 
characterized by a unique atomic number Z, which is equal to 
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the number of protons in its nucleus. A neutral atom has equal numbers of protons, which 
are positively charged, and electrons, which are negatively charged.
 Electrons were believed to be particles from the time of their discovery in 1897 
until 1924, when the French physicist Louis de Broglie suggested that they have wavelike 
properties as well. Two years later Erwin Schrödinger took the next step and calculated the 
energy of an electron in a hydrogen atom by using equations that treated the electron as if 
it were a wave. Instead of a single energy, Schrödinger obtained a series of them, each of 
which corresponded to a different mathematical description of the electron wave. These 
mathematical descriptions are called wave functions and are symbolized by the Greek 
letter ψ (psi).

Eighteenth-century chemists regarded their science as being 

composed of two branches. One dealt with substances 

obtained from natural or living sources and was called organic 

chemistry; the other dealt with materials from nonliving matter— 

minerals and the like—and was called inorganic chemistry. Over 

time, combustion analysis established that the compounds 

derived from natural sources contained carbon, and a new def-

nition of organic chemistry emerged: Organic chemistry is the 

study of carbon compounds. This is the defnition we still use 

today.

As the eighteenth century gave way to the nineteenth, 

many scientists still subscribed to a doctrine known as vitalism, 

which held that living systems possessed a “vital force” that was 

absent in nonliving systems. Substances derived from natural 

sources (organic) were thought to be fundamentally different 

from inorganic ones. It was believed that inorganic compounds 

could be synthesized in the laboratory, but organic compounds 

could not—at least not from inorganic materials.

In 1823, Friedrich Wöhler, after completing medical stud-

ies in Germany, spent a year in Stockholm studying under one of 

the world’s foremost chemists of the time, Jöns Jacob Berzelius. 

Wöhler subsequently went on to have a distinguished indepen-

dent career, spending most of it at the University of Göttingen. 

He is best remembered for a brief paper he published in 1828 

in which he noted that, on evaporating an aqueous solution of 

ammonium cyanate, he obtained “colorless, clear crystals often 

more than an inch long,” which were not ammonium cyanate but 

were instead urea. 

NH4OCN O C(NH2)2

Ammonium cyanate
(inorganic)

Urea
(organic)

This transformation was remarkable at the time because 

an inorganic salt, ammonium cyanate, was converted to urea, 

a known organic substance earlier isolated from urine. It is 

now recognized as a signifcant early step toward overturning 

the philosophy of vitalism. Although Wöhler himself made no 

extravagant claims concerning the relationship of his discovery 

to vitalist theory, the die was cast, and over the next generation 

organic chemistry outgrew vitalism. What particularly seemed to 

excite Wöhler and Berzelius had very little to do with vitalism. 

Berzelius was interested in cases in which two clearly different 

materials had the same elemental composition, and he invented 

the word isomers to apply to them. Wöhler’s observation that an 

inorganic compound (ammonium cyanate) of molecular formula 

CH4N2O could be transformed into an organic compound (urea) 

of the same molecular formula had an important bearing on the 

concept of isomerism.

From the concept of isomerism we can trace the origins 

of the structural theory—the idea that a specifc arrangement 

of atoms uniquely defnes a substance. Ammonium cyanate 

and urea are different compounds because they have different 

structures. 

Three mid-nineteenth-century scientists, August Kekulé, 

Archibald S. Couper, and Alexander M. Butlerov, stand out for 

separately proposing the elements of the structural theory. The 

essential features of Kekulé’s theory, developed and presented 

while he taught at Heidelberg in 1858, were that carbon nor-

mally formed four bonds and had the capacity to bond to other 

carbons so as to form long chains. Isomers were possible because 

the same elemental composition (say, the CH4N2O molecular 

formula common to both ammonium cyanate and urea) accom-

modates more than one pattern of atoms and bonds. Shortly 

thereafter, Couper, a Scot working at the École de Medicine 

in Paris, and Butlerov, a Russian chemist at the University of 

Kazan, proposed similar theories.

In the late nineteenth and early twentieth centuries, major 

discoveries about atoms and electrons placed theories of molec-

ular structure and bonding on a more secure, physics-based 

foundation. Several of these are described at the beginning of 

this section.

Organic Chemistry:  The Early Days

1.1 Atoms, Electrons, and Orbitals 3

car02745_ch01_002-051.indd   3 10/2/12   11:53 AM



 According to the Heisenberg uncertainty principle, we can’t tell exactly where an 
electron is, but we can tell where it is most likely to be. The probability of fnding an elec-
tron at a particular spot relative to an atom’s nucleus is given by the square of the wave func-
tion (ψ2) at that point. Figure 1.1 illustrates the probability of fnding an electron at various 
points in the lowest energy (most stable) state of a hydrogen atom. The darker the color in 
a region, the higher the probability. The probability of fnding an electron at a particular 
point is greatest near the nucleus and decreases with increasing distance from the nucleus 
but never becomes zero. 
 Wave functions are also called orbitals. For convenience, chemists use the term 
“orbital” in several different ways. A drawing such as Figure 1.1 is often said to represent 
an orbital. We will see other kinds of drawings in this chapter, and use the word “orbital” 
to describe them too.
 Orbitals are described by specifying their size, shape, and directional properties. 
Spherically symmetrical ones such as shown in Figure 1.1 are called s orbitals. The letter s is 
preceded by the principal quantum number n (n = 1, 2, 3, etc.), which specifes the shell 
and is related to the energy of the orbital. An electron in a 1s orbital is likely to be found 
closer to the nucleus, is lower in energy, and is more strongly held than an electron in a 2s 
orbital.
 Instead of probability distributions, it is more common to represent orbitals by their 
boundary surfaces, as shown in Figure 1.2 for the 1s and 2s orbitals. The region enclosed 
by a boundary surface is arbitrary but is customarily the volume where the probability of 
fnding an electron is high—on the order of 90–95%. Like the probability distribution plot 
from which it is derived, a picture of a boundary surface is usually described as a drawing 
of an orbital.
 A hydrogen atom (Z = 1) has one electron; a helium atom (Z = 2) has two. The single 
electron of hydrogen occupies a 1s orbital, as do the two electrons of helium. We write their 
electron confgurations as:

Hydrogen: 1s1 Helium: 1s2

 In addition to being negatively charged, electrons possess the property of spin. The 
spin quantum number of an electron can have a value of either +1

2 or – 12. According to the 
Pauli exclusion principle, two electrons may occupy the same orbital only when they have 
opposite, or “paired,” spins. For this reason, no orbital can contain more than two electrons. 
Because two electrons fll the 1s orbital, the third electron in lithium (Z = 3) must occupy 
an orbital of higher energy. After 1s, the next higher energy orbital is 2s. The third electron 
in lithium therefore occupies the 2s orbital, and the electron confguration of lithium is

Lithium: 1s22s1

The period (or row) of the periodic table in which an element appears corresponds to the 
principal quantum number of the highest numbered occupied orbital (n = 1 in the case of 
hydrogen and helium). Hydrogen and helium are frst-row elements; lithium (n = 2) is 
a second-row element.
 With beryllium (Z = 4), the 2s level becomes flled and, beginning with boron 
(Z = 5), the next orbitals to be occupied are 2px, 2py, and 2pz. These three orbitals (Fig-
ure 1.3) are of equal energy and are characterized by boundary surfaces that are usually 

x

z

y

Figure 1.1

Probability distribution (ψ2) for an 

electron in a 1s orbital.

Figure 1.2

Boundary surfaces of a 1s orbital and a 

2s orbital.

1s

x

z

y

2s

x

z

y

A complete periodic table of the 

elements is presented at the back of 

the book.

Other methods are also used to 

contrast the regions of an orbital where 

the signs of the wave function are 

different. Some mark one lobe of a 

p orbital + and the other –. Others 

shade one lobe and leave the other 

blank. When this level of detail isn’t 

necessary, no differentiation is made 

between the two lobes.

4 Chapter 1 Structure Determines Properties
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described as “dumbell-shaped.” The axes of the three 2p orbitals are at right angles to one 
another. Each orbital consists of two “lobes,” represented in Figure 1.3 by regions of dif-
ferent colors. Regions of a single orbital, in this case, each 2p orbital, may be separated 
by nodal surfaces where the wave function changes sign and the probability of fnding an 
electron is zero.
 The electron confgurations of the frst 12 elements, hydrogen through magnesium, 
are given in Table 1.1. In flling the 2p orbitals, notice that each is singly occupied before 
any one is doubly occupied. This general principle for orbitals of equal energy is known 
as Hund’s rule. Of particular importance in Table 1.1 are hydrogen, carbon, nitrogen, and 
oxygen. Countless organic compounds contain nitrogen, oxygen, or both in addition to 
carbon, the essential element of organic chemistry. Most of them also contain hydrogen.
 It is often convenient to speak of the valence electrons of an atom. These are 
the outermost electrons, the ones most likely to be involved in chemical bonding and 

Figure 1.3

Boundary surfaces of the 2p orbitals. The wave function changes sign at the nucleus. The two halves 

of each orbital are indicated by different colors. The yz-plane is a nodal surface for the 2px orbital. The 

probability of fnding a 2px electron in the yz-plane is zero. Analogously, the xz-plane is a nodal surface for 

the 2py orbital, and the xy-plane is a nodal surface for the 2pz orbital.

x xx

z

y yy

zz

2px 2pz2py

TABLE 1.1 Electron Configurations of the First Twelve Elements  
of the Periodic Table

Number of electrons in indicated orbital

 
Element

Atomic
number Z

 
1s

 
2s

 
2px

 
2py

 
2pz

 
3s

Hydrogen  1 1

Helium  2 2

Lithium  3 2 1

Beryllium  4 2 2

Boron  5 2 2 1

Carbon  6 2 2 1 1

Nitrogen  7 2 2 1 1 1

Oxygen  8 2 2 2 1 1

Fluorine  9 2 2 2 2 1

Neon 10 2 2 2 2 2

Sodium 11 2 2 2 2 2 1

Magnesium 12 2 2 2 2 2 2

 1.1 Atoms, Electrons, and Orbitals 5
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reactions. For second-row elements these are the 2s and 2p electrons. Because four 
orbitals (2s, 2px, 2py, 2pz) are involved, the maximum number of electrons in the valence 
shell of any second-row element is 8. Neon, with all its 2s and 2p orbitals doubly 
occupied, has eight valence electrons and completes the second row of the periodic table. 
For main-group elements, the number of valence electrons is equal to its group number 
in the periodic table.

Problem 1.1

How many electrons does carbon have? How many are valence electrons? What third-row 

element has the same number of valence electrons as carbon?

 Once the 2s and 2p orbitals are flled, the next level is the 3s, followed by the 3px , 
3py , and 3pz orbitals. Electrons in these orbitals are farther from the nucleus than those in 
the 2s and 2p orbitals and are of higher energy.

Problem 1.2

Referring to the periodic table as needed, write electron confgurations for all the elements in 

the third period.

Sample Solution The third period begins with sodium and ends with argon. The atomic 

number Z of sodium is 11, and so a sodium atom has 11 electrons. The maximum number of 

electrons in the 1s, 2s, and 2p orbitals is ten, and so the eleventh electron of sodium occupies 

a 3s orbital. The electron confguration of sodium is 1s 22s 22px
22py

22pz
23s 1.

 Neon, in the second period, and argon, in the third, have eight electrons in their 
valence shell; they are said to have a complete octet of electrons. Helium, neon, and argon 
belong to the class of elements known as noble gases or rare gases. The noble gases are 
characterized by an extremely stable “closed-shell” electron confguration and are very 
unreactive.
 Structure determines properties and the properties of atoms depend on atomic struc-
ture. All of an element’s protons are in its nucleus, but the element’s electrons are distrib-
uted among orbitals of various energy and distance from the nucleus. More than anything 
else, we look at its electron confguration when we wish to understand how an element 
behaves. The next section illustrates this with a brief review of ionic bonding.

1.2  Ionic Bonds

Atoms combine with one another to give compounds having properties different from 
the atoms they contain. The attractive force between atoms in a compound is a chemical 
bond. One type of chemical bond, called an ionic bond, is the force of attraction between 
oppositely charged species (ions) (Figure 1.4). Positively charged ions are referred to as 
cations; negatively charged ions are anions.
 Whether an element is the source of the cation or anion in an ionic bond depends on 
several factors, for which the periodic table can serve as a guide. In forming ionic compounds, 
elements at the left of the periodic table typically lose electrons, giving a cation that has the 
same electron confguration as the preceding noble gas. Loss of an electron from sodium, for 
example, yields Na+, which has the same electron confguration as neon.

±£Na(g)

Sodium atom
1s22s22p63s1

[The symbol (g) indicates that the species is present in the gas phase.]

Naϩ(g)

Sodium ion
1s22s22p6

eϪ

Electron

ϩ

Detailed solutions to all of the 

problems are found in the Student 

Solutions Manual along with a brief 

discussion and advice on how to do 

problems of the same type.

In-chapter problems that contain 

multiple parts are accompanied by a 

sample solution to part (a).

Figure 1.4

An ionic bond is the force of attraction 

between oppositely charged ions. Each 

Na+ ion in the crystal lattice of solid 

NaCl is involved in ionic bonding to 

each of six surrounding Cl– ions and vice 

versa. The smaller balls are Na+ and the 

larger balls are Cl–.

6 Chapter 1 Structure Determines Properties
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Problem 1.3

Species that have the same number of electrons are described as isoelectronic. What +2 ion is 

isoelectronic with Na+? What –2 ion?

 A large amount of energy, called the ionization energy, must be transferred to any 
atom to dislodge an electron. The ionization energy of sodium, for example, is 496 kJ/mol (119 
kcal/mol). Processes that absorb energy are said to be endothermic. Compared with other 
elements, sodium and its relatives in group 1A have relatively low ionization energies. In 
general, ionization energy increases across a row in the periodic table.
 Elements at the right of the periodic table tend to gain electrons to reach the electron 
confguration of the next higher noble gas. Adding an electron to chlorine, for example, gives 
the anion Cl–, which has the same closed-shell electron confguration as the noble gas argon.

±£Cl(g)

Chlorine atom
1s22s22p63s23p5

ClϪ(g)

Chloride ion
1s22s22p63s23p6

eϪ

Electron

ϩ

Problem 1.4

Which of the following ions possess a noble gas electron confguration?

 (a) K+ (c) H– (e) F–

 (b) He+ (d) O– (f) Ca2+

Sample Solution (a) Potassium has atomic number 19, and so a potassium atom has 

19 electrons. The ion K+, therefore, has 18 electrons, the same as the noble gas argon. The 

electron confgurations of both K+ and Ar are 1s 22s 22p63s 23p6. 

 Energy is released when a chlorine atom captures an electron. Energy-releasing reac-
tions are described as exothermic, and the energy change for an exothermic process has a 
negative sign. The energy change for addition of an electron to an atom is referred to as its 
electron affinity and is −349 kJ/mol (−83.4 kcal/mol) for chlorine.
 We can use the ionization energy of sodium and the electron affnity of chlorine to 
calculate the energy change for the reaction:

Cl(g)

Chlorine atom

+ Cl–(g)+Na(g) Na+(g)

Sodium atom Chloride ionSodium ion

Were we to simply add the ionization energy of sodium (496 kJ/mol) and the electron affn-
ity of chlorine (–349 kJ/mol), we would conclude that the overall process is endothermic by 
+147 kJ/mol. The energy liberated by adding an electron to chlorine is insuffcient to override 
the energy required to remove an electron from sodium. This analysis, however, fails to con-
sider the force of attraction between the oppositely charged ions Na+ and Cl–, as expressed in 
terms of the energy released in the formation of solid NaCl from the separated gas-phase ions:

Cl–(g)

Chloride ion

+Na+(g)

Sodium ion Sodium chloride

NaCl(s)

This lattice energy is 787 kJ/mol and is more than suffcient to make the overall process for 
formation of sodium chloride from the elements exothermic. Forces between oppositely 
charged particles are called electrostatic, or Coulombic, and constitute an ionic bond when 
they are attractive.

Problem 1.5

What is the electron confguration of C+? Of C–? Does either one of these ions have a noble gas 

(closed-shell) electron confguration?

The SI (Système International d’Unites) 

unit of energy is the joule (J). An older 

unit is the calorie (cal). Many chemists 

still express energy changes in units of 

kilocalories per mole (1 kcal/mol = 

4.184 kJ/mol).

Ionic bonding was proposed by the 

German physicist Walther Kossel in 

1916, in order to explain the ability of 

substances such as molten sodium 

chloride to conduct an electric current. 

He was the son of Albrecht Kossel, 

winner of the 1910 Nobel Prize in 

Physiology or Medicine for early studies 

of nucleic acids.

 1.2 Ionic Bonds 7
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 Ionic bonds are very common in inorganic compounds, but rare in organic ones. The 
ionization energy of carbon is too large and the electron affnity too small for carbon to realis-
tically form a C4+ or C4– ion. What kinds of bonds, then, link carbon to other elements in mil-
lions of organic compounds? Instead of losing or gaining electrons, carbon shares electrons 
with other elements (including other carbon atoms) to give what are called covalent bonds.

1.3  Covalent Bonds, Lewis Formulas, and the Octet Rule

The covalent, or shared electron pair, model of chemical bonding was frst suggested by 
G. N. Lewis of the University of California in 1916. Lewis proposed that a sharing of two 
electrons by two hydrogen atoms permits each one to have a stable closed-shell electron 
confguration analogous to helium.

H

Two hydrogen atoms,
each with a single

electron

H

Hydrogen molecule:
covalent bonding by way of

a shared electron pair

H H

 The amount of energy required to dissociate a hydrogen molecule H2 to two separate 
hydrogen atoms is its bond dissociation enthalpy. For H2 it is quite large, amounting to 
+435 kJ/mol (+104 kcal/mol). The main contributor to the strength of the covalent bond 
in H2 is the increased Coulombic force exerted on its two electrons. Each electron in H2 
“feels” the attractive force of two nuclei, rather than one as it would in an isolated hydro-
gen atom.
 Only the electrons in an atom’s valence shell are involved in covalent bonding. 
Fluorine, for example, has nine electrons, but only seven are in its valence shell. Pairing a 
valence electron of one fuorine atom with one of a second fuorine gives a fuorine mol-
ecule (F2) in which each fuorine has eight valence electrons and an electron confguration 
equivalent to that of the noble gas neon. Shared electrons count toward satisfying the octet 
of both atoms.

Fluorine molecule:
covalent bonding by way of

a shared electron pair

F F

Two fluorine atoms, each
with seven electrons in

its valence shell

FF

The six valence electrons of each fuorine that are not involved in bonding comprise three 
unshared pairs.
 Structural formulas such as those just shown for H2 and F2 where electrons are repre-
sented as dots are called Lewis formulas, or Lewis structures. It is usually more convenient 
to represent shared electron-pair bonds as lines and to sometimes omit electron pairs.
 The Lewis model limits second-row elements (Li, Be, B, C, N, O, F, Ne) to a total 
of eight electrons (shared plus unshared) in their valence shells. Hydrogen is limited to 
two. Most of the elements that we’ll encounter in this text obey the octet rule: In forming 
compounds they gain, lose, or share electrons to achieve a stable electron configuration 
characterized by eight valence electrons. When the octet rule is satisfed for carbon, nitro-
gen, oxygen, and fuorine, each has an electron confguration analogous to the noble gas 
neon. The Lewis formulas of methane (CH4), ammonia (NH3), water (H2O), and hydrogen 
fuoride (HF) given in Table 1.2 illustrate the octet rule.
 With four valence electrons, carbon normally forms four covalent bonds as shown in 
Table 1.2 for CH4. In addition to C ⎯ H bonds, most organic compounds contain covalent 
C ⎯ C bonds. Ethane (C2H6) is an example.

or

H
A

A
H

H
A

A
H

HOCOCOH
to write a
Lewis formula
for ethane

H
P
R

P
R

H

H
P
R

P
R

H

HTTCT TCTTH
Combine two
carbons and
six hydrogens

C HH C
H H

H H

Gilbert Newton Lewis has been called 

the greatest American chemist.

Unshared pairs are also called lone 

pairs.

8 Chapter 1 Structure Determines Properties
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Problem 1.6

Write Lewis formulas, including unshared pairs, for each of the following. Carbon has four 

bonds in each compound.

 (a) Propane (C3H8) (c) Methyl fuoride (CH3F)

 (b) Methanol (CH4O) (d) Ethyl fuoride (C2H5F)

Sample Solution (a) The Lewis formula of propane is analogous to that of ethane but the 

chain has three carbons instead of two.

HT TCT TCT TCT TH

to write a
Lewis formula
for propane

Combine three
carbons and
eight hydrogens

H
A

A
H

H
A

A
H

H
A

A
H

or HOCOCOCOH

H
P
R

P
R

H

H
P
R

P
R

H

H
P
R

P
R

H

HH

H
C
H

H
H
C

H
C H

The ten covalent bonds in the Lewis formula shown account for 20 valence electrons, which is 

the same as that calculated from the molecular formula (C3H8). The eight hydrogens of C3H8 

contribute 1 electron each and the three carbons 4 each, for a total of 20 (8 from the hydrogens 

and 12 from the carbons). Therefore, all the valence electrons are in covalent bonds; propane 

has no unshared pairs.

1.4  Double Bonds and Triple Bonds

Lewis’s concept of shared electron pair bonds allows for four-electron double bonds and 
six-electron triple bonds. Ethylene (C2H4) has 12 valence electrons, which can be distrib-
uted as follows:

to writeCombine two carbons 
and four hydrogens TCT TCT 

H
P
R

P
R

H

H
P
R

P
R

H

C C
H H

H H

TABLE 1.2 Lewis Formulas of Methane, Ammonia, Water,  
and Hydrogen Fluoride 

  
Compound Atom

Number of 
valence electrons 
in atom

Atom and sufficient 
number of 
hydrogen atoms to 
complete octet

Lewis formula

Dot Line

Methane Carbon 4

N

N
N

N
H

H

C

H

HNNNN

H
C
H

H H
OCOH

H
A

A
H

H

Ammonia Nitrogen 5    O OH
A
H

NH

Water Oxygen 6   

Hydrogen 
fuoride

Fluorine 7   

M

N
NNNH HN
N

N

H

N
H

H H

NH HN
M

M
NNO OH H O OHOH

S
M

M
NNH F H F OH F
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